On Three Remarkable Affine Connexions in Almost-Hermitian Spaces

by

KENTARO YANO

ZW 1954-21

On three remarkable affine connexions in almost-Hermitian spaces By Kentaro Yano.

§ 1. Almost-Hermitian, almost-Kählerian, pseudo-Hermitian and pseudo-Kählerian spaces.

Let \mathbb{X}_{2n} be a 2n-dimensional differentiable manifold of class \mathbb{C}^3 admitting an almost complex structure \mathbb{T}^4 defined by the tensor field \mathbb{F}^4_1 of class \mathbb{C}^2_1

(1.1)
$$F_j^{*h} F_k^{*j} = -A_k^h$$
.

where the Latin indices h, i, j, k, l, m run over the range 1,2,..., n,n+1,...,2n and Λ_4^h denotes the unit tensor.

Since the eigenvalues of the tensor F_1^{*h} satisfying (1.1) are +1 and +1, the introduction of a tensor F_1^{*h} satisfying (1.1) is equivalent to the introduction of two mutually linearly independent linear fields E_{2n}^{n} is complex conjugate to each other and of complex dimensions n.

A. Lichnerowicz [11,12] showed that it is always possible to give an almost-Hermitian structure \mathcal{E}_{4h} to an almost complex manifold \mathbf{X}_{2n} :

$$(1.2) F_i^{*l} F_h^{*k} g_{lk} = g_{ih} .$$

If we put

then it is easily seen that \mathbb{F}_{ih} is anti-symmetric in its lower indices. We call almost-Hermitian space a manifold which admits an almost complex structure \mathbb{F}_i^{*h} and an almost-Hermitian structure \mathbb{F}_{ih}^{*h} , that is, a positive definite metric $ds^2 = \mathbb{F}_{ih} d\xi^{*h}$ satisfying (1.1) and (1.2).

¹⁾ The notion of an almost complex structure was introduced by C. Maresmann. See for instance, C. Thresmann [4,5]. The number between brackets refer to the Bibliography at the end of the paper.

²⁾ As to the notations, we follow J.A. Schouten [15].

The anti-symmetry of the tensor F_{ih} and equation (1.2) show that the operation v^h F_i^{*h} v^i changes a vector v^h into a vector orthogonal to it and does not change its length.

We now put

then P_{jih} is a covariant tensor anti-symmetric in all its indices. Denoting by $\mathring{\nabla}_j$ the operation of covariant differentiation with respect to the Christoffel symbols $\begin{Bmatrix} h \\ ji \end{Bmatrix}$ formed with g_{jh} , we can write (1.4) also in the form

In an almost-Hermitian space, when the tensor F jih vanishes identically, the space is called on almost-Kählerian space.

It is well-known that

Theorem 1.1. In order that an almost complex structure \mathbb{Z}^h of class \mathbb{C}^w in a space of class \mathbb{C}^w be induced by a complex structure of the space. It is necessary and sufficient that the tensor \mathbb{Z}^h satisfies

(1.6)
$$W_{33}^{*h} \stackrel{\text{def}}{=} 2 P_{13}^{*h} (\partial_{10} P_{33}^{*h} - \partial_{33} P_{2}^{*h}) = 0.$$

The theorem essentially equivalent to this was stated by de Eham, Ehrosmann, Libermann [10], Echmann, Frölicher [3], Calabi, Spencer [1], Guggenheimer [6,7] and Hodge [8]. The tensor Will was introduced by Nijenhuis [13] and the equation of the form (1.6) was given by Echmann and Frölicher [3].

Equation (1.6) can be written also in the form

(1.7)
$$\mathbf{x}_{11}^{(1)} = 2 \mathbf{x}_{11}^{(1)} (\mathring{\nabla}_{[1]} \mathbf{x}_{11}^{(1)} - \mathring{\nabla}_{11} \mathbf{x}_{11}^{(1)})$$

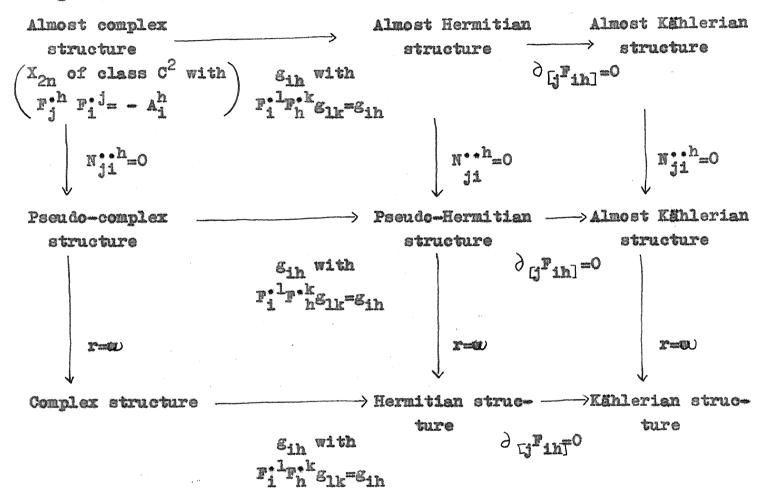
or in covariant form

It some quite reasonable to expect that Theorem 1.1 may be true for a tensor P_i^{h} of class C^{r-1} in a space of class C^{r} where $r \neq \omega$, but we do not yet have the proof of this fact.

³⁾ See also J.A. Schouten 14 .

In an almost-Hermitian (almost-Kählerian) space of class C^r , when the Nijenhuis tensor N_{ji}^{**h} vanishes identically, the space is called a pseudo-Hermitian (pseudo-Kählerian) space. Following Theorem 1.1, a pseudo-Hermitian (pseudo-Kählerian) space of class C is Hermitian (Kählerian).

The relations between these spaces may be seen in the following diagram:



In an almost-Hermitian space, it is easily seen from (1.5) and (1.8) that if $\mathring{\nabla}_j$ F_{ih} vanishes, then the tensors F_{jih} and N_{jih} vanish also.

Conversely, since we have from (1.5) and (1.8)

(1.9)
$$N_{jih} = 2 (P_j^1 \mathring{\nabla}_h P_{il} - P_{ij}^1 P_{i]hl}),$$

we can easily see that if two tensors F_{jih} and N_{jih} vanish, then ∇ f_{ih} vanishes also. Thus we have [17].

Theorem 1.2. A necessary and sufficient condition that an almost-Hermitian space be pseudo-Kählerian is that ∇_j Fih = 0.

§ 2. Affine connexions leaving invariant the tensor Fin.

Let us now introduce an affine connexion h in our almost-Hermitian space and put

then the torsion tensor is given by

$$(2.2) s_{ji}^{\bullet h} = \begin{bmatrix} h & \cdots & h \\ Gil & Gil \end{bmatrix} \cdot$$

Denoting by ∇_j the operation of covariant differentiation with respect to Γ_{ji}^h , in order to have ∇_j $\varepsilon_{ih}=0$, it is necessary and sufficient that we have

(2.3)
$$T_{j(ih)} = 0$$

which is equivalent to

$$T_{jih} = S_{jih} + S_{hij} + S_{hji}$$

where

On the other hand, in order to have $\nabla_j P_{ih} = 0$, it is necessary and sufficient that we have

$$(2.6) \qquad \qquad \mathring{\nabla}_{j} \, \mathbb{F}_{ih} - \mathbb{T}_{ji}^{*,l} \, \mathbb{F}_{lh} - \mathbb{T}_{jh}^{*,l} \, \mathbb{F}_{il} = 0$$

or what amounts to the same

(2.7)
$$\mathring{\nabla}_{j} \mathbb{F}_{ih} + \mathbb{T}_{jil} \mathbb{F}_{h}^{il} - \mathbb{T}_{jhl} \mathbb{F}_{i}^{il} = 0.$$

We cannot solve equation (2.7) without putting further conditions on T_{jih} . Putting some further conditions on T_{jih} or rather on

$$\mathbf{r}_{jih} \stackrel{\text{def}}{=} \mathbf{r}_{jil} \mathbf{r}_{h}^{\cdot l},$$

we shall try to solve equation (2.7) with respect to T_{jih} . From now on, we assume only $\nabla_j F_{ih} = 0$ and not $\nabla_j g_{ih} = 0$.

§ 3. The first connexion.

We first assume that

(3.1)
$$\hat{T}_{j(1h)} = 0.$$

then we have from (2.7)

$$(3.2) \qquad \qquad '\hat{T}_{jih} = -\frac{1}{2} \stackrel{\circ}{\nabla}_{j} F_{ih}$$

or.

(3.3)
$$r_{jih} = \frac{1}{2} \left(\stackrel{\circ}{\nabla}_{j} F_{il} \right) F_{h}^{*l}$$

and consequently

(3.4)
$$T_{ji}^{\bullet,h} = -\frac{1}{2} \left(\nabla_{j} F_{ii} \right) F^{lh}.$$

From (3.4), we get

(3.5)
$$s_{ji}^{h} = r_{ji}^{h} = -\frac{1}{2} (\mathring{\nabla}_{j} F_{i, 1}) F^{lh}$$
.

Since F_{il} F_h¹ = g_{ih} and consequently

$$(\mathring{\nabla}_{j} \mathbb{F}_{il})\mathbb{F}_{h}^{il} + \mathbb{F}_{i}^{il}(\mathring{\nabla}_{j} \mathbb{F}_{hl}) = 0,$$

equation (3.3) shows that $T_{j(ih)} = 0$ and consequently the connexion is metric and we have

$$(3.6) \qquad \qquad \dot{\nabla}_{j} g_{ih} = 0 \quad , \qquad \dot{\nabla}_{j} F_{ih} = 0.$$

From (1.9) and (3.3), we find

(3.7)
$$P_{jih} = \frac{1}{2} N_{hij} - \frac{1}{2} P_{[h} P_{i]gl}$$

Thus we have, for an almost-Kählerian space,

(3.8)
$$\dot{x}_{jih} = \dot{x} N_{hij}$$

for a pseudo-Hermitian space,

(3.9)
$$\hat{x}_{jih} = -\frac{1}{2} F_{[h}^{1]} J_{i]}$$

and for a pseudo-Kählerian space,

(3.10)
$$r'_{jih} = 0.$$

In the last case the connexion $_{ji}^{h}$ becomes Riemannian. In a Hermitian space tensors g_{ih} and F_{i}^{h} have the components

(3.11)
$$g_{ih} = \begin{pmatrix} 0 & g_{x} & & +i & 0 \\ g_{x} & 0 & & p_{i}h & \\ & & & & 0 & & -i & & \\ \end{pmatrix}$$

respectively and consequently the tensors Fih and Fih def gil Fih the components

(3.12)
$$F_{ih} = \begin{pmatrix} 0 & -ig \\ +ig \\ x \end{pmatrix} \qquad \begin{pmatrix} -ig \\ x \end{pmatrix} \qquad \begin{pmatrix}$$

respectively with respect to a complex coordinate system $(z^x, z^x = z^x)$, where the Greek indices x, , , , run over the range 1,2,...,n and x, , , , the range n+1, n+2,...,2n.

Thus for the Christoffel symbols h we have 4)

and four similar empressions for X , X and X. We shall denote in the following by the sign "conj." the fact that we have similar formulas as complex conjugates of the formulas already written.

For the tensor F_{jih} and j F_{ih} we have respectively conj. (3.14) $F_{x} = +2i$ $g_{x} = +2i$

⁴⁾ See for example J.A. Schouten 15 , P. 396.

and

$$F^{*X} = 0,$$
 conj.
$$(3.15)$$

$$F^{*X} = -2 i X$$
 conj.
$$F^{*X} = 0,$$
 conj.

Thus for the tensor (3.4), we have

and consequently, for the components of the affine connexion

$$(3.17) \qquad \qquad \begin{array}{c} h \\ ji = \\ ji \end{array} + \begin{array}{c} r \cdot h \\ ji \end{array} ,$$

we have

$$(3.18) \qquad \qquad x = x \qquad \qquad x = x \qquad conj.$$

the other 's being zero.

In a classification by Schouten (15 p. 396, formula (3.6)), this corresponds to the case

(3.19)
$$S^{**X} = 0$$
, $S^{**X} = -\frac{1}{2} g^{X}$, $S^{**X} = 0$, conj.

§ 4. The second connexion.

We next assume that

(4.1)
$$T (j i h) = 0,$$
 then we have from (2.7)

(4.2)
$$T_{jih} = -\frac{1}{2} \left(\int_{a} P_{ih} + \int_{a} P_{jh} - \int_{h} P_{ij} \right)$$

(4.3)
$$T_{jih} = + \frac{1}{2} \left(\int_{1}^{1} P_{il} + \int_{1}^{1} P_{il} - \int_{1}^{1} P_{il} \right) F_{h}^{1}$$

and consequently

(4.4)
$$T_{ji}^{*,h} = -\frac{1}{2} (j_{il} + j_{jl} - j_{ij}) T_{ij}^{lh}$$
.

From (4.4), we get

(4.5)
$$S_{ji}^{*h} = T_{ji}^{*h} = -\frac{1}{2} \left(P_{ji} \right) F^{lh}$$

From (4.3), we find

(4.6)
$$T_{jih} = F_h^{*l} \quad i \quad F_{jl} - \frac{1}{2} \quad F_h^{*l} \quad F_{ijl}$$

Thus combining (1.9) and (4.6), we find

(4.7)
$$T_{jih} = \frac{1}{2} N_{hji} - \frac{1}{2} F_{j}^{1} P_{ihl}$$
.

Thus we have, for an almost-Kählerian space,

(4.8)
$$T_{jih} = \frac{1}{2} N_{hji}$$

and for a pseudo-Hermitian space

(4.9)
$$T_{jih} = -\frac{1}{2} F_{j}^{1} F_{ihl}$$
.

In the case of pseudo-Hermitian space, the tensor T_{jih} satisfies (2.3) and consequently the connexion is metric and we have

(4.10)
$$j g_{ih} = 0$$
, $j F_{ih} = 0$.

Finally we have, for a pseudo-Kählerian space,

$$(4-11) T_{jih} = 0$$

and the connexion becomes Riemannian.

In a Hermitian space, in addition to formulas (3.11)-(3.15), we have following expressions for i Fih:

(4.12)
$$F_{X} = 0$$
, $F_{X} = 0$, $F_{X} = 0$, $F_{X} = 0$, conj.

Thus, for the tensor Tji we have

$$T^{\bullet \times X} = g \times g \qquad \text{conj.}$$

$$T^{\bullet \times X} = -g \times g \qquad \text{conj.}$$

$$T^{\bullet \times X} = 0, \qquad \text{conj.}$$

$$T^{\bullet \times X} = -g \times g \qquad \text{conj.}$$

and consequently for the connexion

we have

(4.15)
$$X = S \times S$$
, $X = 0$, $X = 0$, conj.

This is the affine connexion introduced by J.A. Schouten and D. van Dantzig 16 and used recently by S.S. Chern 2 and P. Libermann 10 5).

In a classification by Schouten, (15, p. 396, formula (3.6)), this corresponds to the case

(4.16)
$$S^{**X} = g$$
 g , $S^{X} = 0$, $S^{**X} = 0$ conj.

5. The third connexion.

We finally assume that

(5.1)
$$T_{(ji)h} = 0$$
,

then we have from (2.7)

(5.2)
$$T_{jih} = -\frac{1}{2} \left(\int_{j} P_{jih} - \int_{i} P_{jih} + \int_{i} P_{ij} \right)$$

or

and consequently

⁵⁾ See also G. Legrand 9 .

From (5.4) we get

(5.5)
$$s_{ji}^{*:h} = r_{ji}^{*:h} = r_{ji}^{*:h}$$

From (5.3) we find

Thus combining (5.3) and (5.6), we obtain

(5.7)
$$r_{jih} = \frac{1}{2} r_{jih} + \frac{1}{2} (r_{j}^{*1} + r_{jh}^{*1} + r_{j}^{*1} + r_{jh}^{*1} + r_{jh}^{*1} + r_{ji}^{*1}).$$

On the other hand, we have from (1.5)

Substituting this into (5.7), we find

Thus we have, for an almost-Kähastian space,

and, for a pseudo-Hermitian space,

(5.11)
$$T_{jih} = \hat{z} \; F_{j}^{*n} \; F_{i}^{*k} \; F_{mlk} \; .$$

In the case of pseudo-Hermitian space, the tensor T_{jih} is antisymmetric in all its indices and consequently satisfies (2.3) and the connexion is metric.

Thus we have

Finally we have, for a pseudo-Kählerian space,

and the connexion becomes Riemannian.

In a Hermitian space, we have, for the tensor Til.

-11-

and consequently, for the components of the affine connection

we have

$$(5.16) \quad \begin{array}{c} x = 6 \\ \end{array} \quad 6 \quad \begin{array}{c} x = 0, \\ \end{array} \quad \begin{array}{c} x = 0, \\ \end{array} \quad \begin{array}{c} x = 26 \\ \end{array} \quad 6$$

eonj.

In a classification by J.A. Schouten (15 p. 396, formula (3.6)), this corresponds to the case

(5.17)
$$S^{**X} = -8$$
 8 $S^{**X} = -8$ 8 $S^{**X} = 0$ conj.

Bibliography

- # E. Calabi and D.C. Spencer: Completely integrable almost complex manifolds. Bull.Amer.Math.Soc., 57 (1951), 254-255.
- 2 S.S. Chern: Characteristic classes of Hermitian manifolds.
 Annals of Math., 47 (1946), 85-121.
- 3 B. Eckmann and A. Frölicher: Sur l'intégrabilité de structures presque complexes. C.R.Acad.Sci. Paris, 232 (1951), 2284-2286.
- 4 C. Emesmann: Sur la théorie des espaces fibrés. Coll. de lop.
 Alg. C.N.R.S. Paris (1947), 3-15.
- Sur les variétés presque complexes. Proc. Int.Congr.
 Math., (1952), 412-419.
- 6 H. Guggenheimer: Uber Kählersche und symplektische Differentialalgebra. Töhoku Math. Journ. 4 (1952), 157-171.
- Geometria pseudo-kähleriana. Rend. Acad. Nas. dei Lincei, 14 (1953). 220-222.
- 8 W.V.D. Hodge: Structure problems for complex memifolds. Rend. Math. e Appl. Ser. V, 11 (1952), 101-110.
- 9 G. Legrand: Connexions affines sur une variété presque hermitique. C.R.Acad.Sci. Paris, 237 (1953), 1626-1627.
- P. Libermann: Sur ke problème d'équivalence de certaines structures infinitésimales. Thèse (1953).
- 11 A. Lichmerowicz: Généralisations de la géométrie kählérienne globale. Coll.de Géom.Diff. Louvain (1951), 99-122.
- 2 Un théorème sur les espaces homogenes complexes.

 Archiv der Math., 5 (1954), 207-215.
- A. Nijenhuis: K_{n-1}-forming sets of eigenvectors. Indigationes
 Mathematicae 8 (1951), 200-212.
- 14 J.A. Schouten: Sur les tenseurs de aux directions principales n-1-normales. Coll. de Géom. Diff. Louvain (1951), 67-70.

- 15 J.A. Schoutens Ricci Calculus (1954).
- J.A. Schouten and D. van Dantzig: Uber unitare Geometrie.
 Math.Ann., 103 (1930), 319-346.
- 17 K. Yano and I. Mogi: Sur les variétés pseudo-kähleriennes à courbure holomorphique constante. C.R. Acad.Sci. Paris, 237 (1953), 962-964.